Adaptive Learning of RBF Network Based on Adaptation Complexity
نویسندگان
چکیده
Radial neural network can be used to decompose complex problems with good biological properties. Adaptive control for neural network is helpful to improve the efficiency of pattern classification. In order to solve pattern classification with different adaptive characteristics, multiple adaptive algorithms are embedded in radial neural network. Through the test of the objective function, it is found that not all of the combinational algorithms can get desired results. After systemic tests, it is found that shifting strategy in the later stage of learning process can get good effect with the appropriate change strategy. Keeping consistent major evolutionary strategy is correct and necessary. Only if the simulation stop optimizing, appropriate other strategy should be taken for reaching better effect.
منابع مشابه
Adaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملPosition Control of a Pulse Width Modulated Pneumatic Systems: an Experimental Comparison
In this study, a new adaptive controller is proposed for position control of pneumatic systems. Difficulties associated with the mathematical model of the system in addition to the instability caused by Pulse Width Modulation (PWM) in the learning-based controllers using gradient descent, motivate the development of a new approach for PWM pneumatics. In this study, two modified Feedback Error L...
متن کاملConnections, Communication and Collaboration in Healthcare’s Complex Adaptive Systems; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”
A more sophisticated understanding of the unpredictable, disorderly and unstable aspects of healthcare organisations is developing in the knowledge translation (KT) literature. In an article published in this journal, Kitson et al introduced a new model for KT in healthcare based on complexity theory. The Knowledge Translation Complexity Network Model (KTCNM) provides a fresh perspective by mak...
متن کاملOn the effect of low-quality node observation on learning over incremental adaptive networks
In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....
متن کاملEnvironment-Adaptation Mobile Radio Propagation Prediction Using Radial Basis Function Neural Networ - Vehicular Technology, IEEE Transactions on
This paper investigates the application of a radial basis function (RBF) neural network to the prediction of field strength based on topographical and morphographical data. The RBF neural network is a two-layer localized receptive field network whose output nodes from a combination of radial activation functions computed by the hidden layer nodes. Appropriate centers and connection weights in t...
متن کامل